

IP Convection and ⁶Li in the atmospheres of metal-poor halo stars

Matthias Steffen (AIP) Roger Cayrel (Paris) Piercarlo Bonifacio (Paris) Hans-Günter Ludwig (Paris) Elisabetta Caffau (Paris)

Outline

- Introduction: ⁶Li and convective line asymmetry
- Method: 3D NLTE line formation calculations for lithium
- Results:
 - Correction of the Asplund et al. (2006) ⁶Li abundances
 - Examples: HD74000, G271-162, HD 84937
- Conclusions

A radical solution of the 2nd lithium problem

Line shift, line asymmetry, and the ⁶Li/⁷Li isotopic ratio determination * A&A 473, L37 (2007)

Roger Cayrel¹, Matthias Steffen², Hum Chand³, Piercarlo Bonifacio^{4,5,6}, Monique Spite⁴, François Spite⁴, Patrick Petitjean³, Hans-Günter Ludwig^{4,5}, and Elisabetta Caffau⁴

Instead of invoking new physics ... we considered the possibility that

Previous ⁶Li detections are only upper limits

ignoring the intrinsic, convection-induced line asymmetry results in a systematic overestimation of the ⁶Li abundance

A systematic reappraisal of former determinations of ⁶Li abundances in halo stars is needed ultra-high spectra resolution, highest possible S/N

Origin of convective line asymmetry

Strong blue-shifted + weak red-shifted profile -> asymmetry

After Dravins et al. (1981)

CO⁵BOLD 3D hydrodynamical simulations of surface convection in metal-poor stars

3D-NLTE line formation in metal-poor stars

 $H + Li \leftrightarrow H^- + Li^+$: Barklem et al. 2003

 \rightarrow departure coefficients *bi*(x,y,z)

Cayrel, Steffen, et al. (2009)

Li 6707: line formation in LTE / NLTE

Li line strength smaller by factor \approx 2 in NLTE

Li 6707: line formation in LTE / NLTE

3D-LTE / NLTE Li 6707 line contribution function

Cayrel, Steffen, et al. (2009)

The CIFIST 3D model atmosphere grid

Fitting 3D-NLTE with 1D LTE

- 3D NLTE ⁷Li λ6707 full blend (no ⁶Li)
- Fitting with 1D LTE ⁶Li / ⁷Li full blend
- 4 free fitting parameters:
 - → A(Li)
 - → ⁶Li / ⁷Li
 - $\rightarrow \xi_{mac}$ (macro + instrumental broadening)
 - $\rightarrow \Delta v$ (global line shift)
- Fixed: ξ_{mic} , v sin i
- Saturation effects included
- Result: $\Delta (^{6}Li / ^{7}Li) = correction for intrinsic line asymmetry$

Spurious ⁶Li signal due to intrinsic line asymmetry

⁶Li detection by Asplund et al. (2006)

⁶Li detection by Asplund et al. (2006)

no ⁶Li detection in HD 74000

no ⁶Li detection in G271-162

⁶Li detection in HD 84937

Fitting results for three real stars

⁶ Li/ ⁷ Li [%]	1D LTE	3D NLTE
<i>v</i> sin <i>i</i>	0.0 / 2.0 km/s	0.0 / 2.0 km/s
HD 74000	0.6 / 0.6	-1.1 / -1.1
G271-162	2.2 / 2.2	0.6 / 0.5
HD 84937	6.3 / 6.0	4.0 / 4.2

Fits by EC

⁶Li / ⁷Li insensitive to assumed $v \sin i$

Fitting results for HD 74000 using additional lines (Cal, Fel)

	1D LTE	3D LTE
Residual line broadening	Macro + Rot. + Instr.	Rot. + Instr.
FWHM (from Li only)	5.9 km/s	3.8 km/s
FWHM (from Ca, Fe)	5.6 km/s	3.0 km/s
⁶ Li/ ⁷ Li free → fixed	0.6% → 1.1%	-0.9% -> 1.3%

Fits by EC

Li only: ${}^{6}\text{Li}/{}^{7}\text{Li}(3D) < {}^{6}\text{Li}/{}^{7}\text{Li}(1D)$ Li + Ca, Fe: ${}^{6}\text{Li}/{}^{7}\text{Li}(3D) > {}^{6}\text{Li}/{}^{7}\text{Li}(1D)$

3D LTE fitting of HD 74000: Anti-correlation between line broadening and ⁶Li abundance

 Δ FWHM=-20% \rightarrow ⁶Li / ⁷Li \approx +0.022

Conclusions

- Taking intrinsic line asymmetry into account in 3D NLTE reduces the 6 Li / 7 Li ratio by $\approx 2\%$
- Correcting the Asplund et al. (2006) sample reduces the number of 2σ detections from 9 to 2 (no ⁶Li plateau, no cosmological ⁶Li problem)
- HD 84937: ⁶Li / ⁷Li ≈ 4% (2σ detection) (peculiar case?)
- Fixing the broadening of Li from other lines is potentially dangerous
- Further investigations necessary Theory: 3D non-LTE line formation of K, Ca, Fe, ... Observation: spectra of even higher quality